
Testing of Changes in
Software System Based
on Source Code Coverage

Alexey Salmin

Alexander Stasenko

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Regression testing

• Testing process which is applied after a program
is modified

• Testing results are compared to the previous ones
(reference results)

• The main purpose is to find new bugs
(regressions)

• Bug-fixes are appreciated

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Regression testing
“As a consequence of the introduction of new
bugs, program maintenance requires far
more system testing per statement written
than any other programming. Theoretically,
after each fix one must run the entire
bank of test cases previously run
against the system, to ensure that it has
not been damaged in an obscure way. In
practice such regression testing must indeed
approximate this theoretical ideal, and it is
very costly.”

[Frederick P. Brooks, Jr. The Mythical Man-Month]

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Pre-commit testing
• It’s better to keep serious bugs out of trunk and important

branches

• The best way is to require for every change to pass some
essential set of tests before the commit

• Good testing infrastructure allows developer to type e.g.
“test_my_changes.sh” in the workspace and get the list of
“new passes” and “new fails” on all platforms

• Too long pre-commit testing significantly slows
down the development process

• Too small pre-commit testing leads to unstable
codebase

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

How to form a pre-commit testing
• Tests for important features

• “Importance” is questionable

• Tests are not always bound to specific features

• Tests that had failed before

• Will never catch a truly “new fail”

• Test failed once will stay there forever

• Redundant: single bug often causes a number of fails

• Unique minimal defect reproducers

• More efficient but still one step behind

• Minimal testing for each component (or even feature)

• Reliable but may be too big

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Tests for a specific change-set
Select tests for the modified component

• Effective but dangerous: affected ≠ modified

One-line change

Broken
component

Application architecture

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Coverage-based test selection
• Concept:

• Start with a wide tests set covering all (or most) components

• Exclude tests that do not cover the modified parts of the
program

• Classic approach:

• Collect coverage of basic blocks

• Build control flow graphs (CFGs) for original and modified
programs

• Exclude the tests that don’t cover changes in the CFG

• Run the rest of test and update the code coverage

[Rothermel, G., Harrold, M.J. A Safe, Efficient Regression Test Selection Technique]

[Wong, W.E., Horgan, J. R., London, S. A Study of Effective Regression Testing in Practice]

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Issues with classic approach
• Basic block coverage

• For every test it requires lots of a disk space (in our case
more than 1Tb per platform)

• For each test suite (merged) it’s still big and hard to analyze
(more than 50Gb in our case)

• It changes very often and should be updated frequently
(collection of coverage is 3 times longer than a regular
testing)

• Building a complete CFG is expensive and redundant

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Code coverage optimized testing

mainline

Last code
coverage test

run

Checkout

Change

Build

Changed
functions

Generate
optimized

testing

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Regular code coverage test runs
• Needed to collect information about existing testing

coverage

• Result is mapping of source function names to a set of
test suites/optsets that covers them (about 300Mb Perl
hash file for each platform)

• Basic block coverage is not used for simplicity

• Performed once per week automatically

• Done on four platforms: Linux/Windows x32/x64

• Performed using specially build version of application
with code coverage information generation enabled (-
profgen Intel compiler switch)

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Specifics of using Intel compiler as
test application
• After each individual test coverage data is merged to

suite/optset to save disk space (still each platform requires
about 50Gb to store it in a packed form)

• Coverage testing can take up to 6 days

• Special compiler wrappers are used to merge code
coverage data after each 100th compilation to handle huge
tests

• Tests are run in compile/link mode only but not all tests
are designed for that thus some tests still execute and
sometimes leave their code coverage too

• Not all platforms can be covered due to lack of testing pool
resources

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Find changed functions
• Reused functionality of existing version control system

• Get list of modified sources

• Get original and modified version of sources

• For modified header files build dependency files are
used to find dependent source files

• Build log is used to get correct compilation commands
(macros and generated header files are important)

• Need some syntax parser solution to remove
dependency on source formatting changes

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Rejected source parsing solution

• Tried to use Python parser generated by ANTLR3 from
already existing grammar

• Too slow (about 10 minutes to parse average source)

• Too much memory consumption (over 2GB per one
modified/original source of average size)

• Need industry quality syntax parser

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Currently used parsing solution
• Based on compiler internal representation dumps

(currently Intel compiler is used for that, also gcc -fdump-
syntax-tree, GCC::TranslationUnit can be used for that)

• Global/routine symbol tables are already constructed in
these dumps (so it is not just plain AST)

• Need to handle other ambiguity such as variable name
suffixes, timestamp sensitive C++ mangling and __LINE__
type macros

• __LINE__/__DATE__/__TIME__ predefined macros are
manually removed/restored in sources

• Multiple sources are dumped in parallel to save time

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Internal representation example

C
source

int i1 = 0;

int main() {

 int i2 = 0;

 return
i1+i2;

}

Routine IL0 dump

PACK| (i2.1) align: 0 MOD 4, size: 4, …

 VAR| (i2.1_V$1) type: SCALAR, size: 4,

 | offset: 0, esize: 4, …, edtype: SI32, …

…

3 0 entry extern SI32 main

 {

4 1 i2.1_V$1 = 0(SI32);

5 2 return ((SI32) i1_V$0 + i2.1_V$1);

6 3 return ;

 }

Root Context C0.1 {

} C0.1

Module symtab dump

PACK| (i1) align: 0 MOD 4, size: 4,

 | …, offset: 0, …

 VAR| (i1_V$0) type: SCALAR, size:

4,

 | offset: 0, esize: 4, …,

 | edtype: SI32, …

 INIT| offset: 0, repeat: 1, ...,

 |data: 0(SI32)

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Finding changed functions
• Each function that has changed internal compiler

representation is considered to be changed

• Each variable usage it replaced by its basic name,
type, align and other definition information, including
complete initialization

• Changes in externally visible variable (or their
initialization) are considered as a whole program
change and code coverage testing optimization is not
performed

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Issues with current parsing solution
• Need to demangle function names used in compiler

dumps and code coverage runs since it was found that
in some cases their mangling can differ

• Issues with not always reliable build dependence file
information (some header dependent source names
are missing in the build log files)

• Debug version of Intel should be used to get all
required internal representation dumps

• Dumps can take up to 30Mb and can be generated
several minutes in the worst case

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Issues with overall approach
• Uses a week old (in a worst case) code coverage

information

• Can’t adequately cover recent code

• Do not work so well with development braches (not
mainline)

• Works well in case of small checkins, since component
promotions:

• usually do not give significant testing reduction

• have high overhead in source dumping time (which adds to
build time and is not paralleled on testing pool)

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Results

0 - 20 20 - 40 40 - 60 60 - 80 80 - 100
0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

40,00%

45,00%

50,00%

Full
Pre-commit

Percent of test suites selected for the testing

Percen
t o

f co
m

m
its

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Conclusions

Amount of the pre-commit testing can be reduced
considerably (55% on the average) even using less
precise methods than classic ones

Overhead of the coverage-based technique can be
significantly less than gain from shortened testing

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

To the future adopters
• Keep your makefiles in order

• Correct prerequisite lists are needed to analyze the diffs

• Ideally incremental builds should work 100% correct

• Use code coverage on a regular basis

• It makes things easier if coverage test runs are set up
already

• Coverage rate should be good for these methods to work
properly

Thank you!

22

Alexey Salmin
Alexander Stasenko

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on
Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products.

Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and Cilk
are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

Legal Disclaimer & Optimization Notice

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

23

23.10.1
2

Intel Confidential

