
8th Central and Eastern European
Software Engineering Conference
in Russia - CEE-SECR 2012
November 1 - 2, Moscow

Vitaly Trifanov, Dmitry Tsitelov

Dynamic data race detection in
concurrent Java programs

Devexperts LLC

Agenda

 What are data races and why they are dangerous

 Automatic races detection
 approaches, pros & cons

 Happens-before race detection algorithm
 Vector clocks

 Our dynamic race detector
 implementation
 solved problems

Data Race Example
public class Account {

private int amount = 0;

public void deposit(int x) {amount += x;}

public int getAmount() {return amount;}

}

public class TestRace {

 public static void main (String[] args) {

 final Account a = new Account();

 Thread t1 = depositAccountInNewThread(a, 5);

 Thread t2 = depositAccountInNewThread(a, 6);

 t1.join();

 t2.join();

 System.out.println(account.getAmount()); //may print 5, 6, 11.

}

}

Expected Execution

Racy Execution

Data Races

 Data race occurs when many threads access the same
shared data concurrently; at least one writes

 Usually it’s a bug

Data Races Are Dangerous

 Hard to detect if occurred
 no immediate effects
 program continues to work
 damage global data structures

 Hard to find manually
 Not reproducible - depends on threads timing
 Dev & QA platforms are not so multicore

Automatic Race Detection

 20+ years of research

 Static
 analyze program code offline
 data races prevention (extend type system, annotations)

 Dynamic: analyze real program executions
 On-the-fly
 Post-mortem

Dynamic Detectors vs Static

Static Approach

 Pros
 Doesn’t require program execution
 Analyzes all code
 Doesn’t depend on program input, environment, etc.

 Cons
 Unsolvable in common case
 Has to reduce depth of analysis

 A lot of existing tools for Java
 FindBugs, jChord, etc

Dynamic Approach

 Pros
 Complete information about program flow
 Lower level of false alarms

 Cons
 Very large overhead

 No existing stable dynamic detectors for Java

Static vs Dynamic: What To Do?

 Use both approaches 

 Static (FindBugs/Sonar, jChord, …)
 Eliminate provable synchronization inconsistencies

on the early stage

 Dynamic
 Try existing tools, but they are unstable

 IBM MSDK, Thread Sanitizer for Java
 That’s why we’ve developed our own!

Data Race Detector Concept

 Application uses libraries and frameworks via API
 At least JRE

 API is well documented
 “Class XXX is thread-safe”
 “Class YYY is not thread-safe”
 “XXX.get() is synchronized with preceding call of XXX.set()”

 Describe behavior of API and exclude library from
analysis

DRD: How It’s Organized

What Operations to Intercept?

 Synchronization operations
 thread start/join/interrupt
 synchronized
 volatile read/write
 java.util.concurrent

 Accesses to shared data
 fields
 objects

How It Works

Config
Race

detection
module

Instrumented
app classes

interceptor

Application
classes DRD agent

JLS: Publishing Data

Publish changes

Receive changes

JLS: Synchronized-With Relation

 “Synchronized-with” relation
 unlock monitor M ↦ all subsequent locks on M
 volatile write ↦ all subsequent volatile reads
 …

 Notation: send ↦ receive

JLS: Happens-Before & Data Races

 X happens-before Y, when
 X, Y - in same thread, X before Y in program order
 X is synchronized-with Y
 Transitivity: exists Z: hb(X, Z) && hb(Z, Y)

 Data race: 2 conflicting accesses, not ordered by
happens-before relation

Happens-Before Example

 No data race

Vector Clock

Vector Clock

Vector Clock

Vector Clock

Vector Clock

Vector Clock

Vector Clock

Vector Clock

Vector Clock

Not ordered!

A: 3 > 2
B: 3 < 4

How It Works. No Data Race Example

How It Works. Data Race Example

Code Instrumentation

 Check everything => huge overhead

 Race detection scope
 Accesses to our fields
 Foreign calls (treat them as read or write)

 Sync scope
 Detect sync events in our code
 Describe contracts of excluded classes
 Treat these contracts as synchronization events

Race Detection

private class Storage {
 private Map<Integer, Item> items = new HashMap<Integer, Item> ();

public void store(Item item) {
 items.put(item.getId(), item);
}

public void saveToDisk() {
 for (Item item : items.values()) {

 //serialize and save
 saveItem(item);
 //...

 }
}

public Item getItem(int id) {
 return items.get(id);
}

 public void reload() {
 items = deserealizeFromFile();
 }
}

On each access of “items” field we check
race on this field

On each access of “items” field we check
race on this field

On each call of “items” method we check
race on this object

On each call of “items” method we check
race on this object

Each field of class Item is protected the
same way as field “items” of class Storage
Each field of class Item is protected the

same way as field “items” of class Storage

Synchronization Contract Example

Clocks Storing

 Thread clock
 ThreadLocal<VectorClock>

 Field XXX
 volatile transient VectorClock XXX_vc;

 Foreign objects, monitors
 WeakIdentityConcurrentHashMap<Object,VectorClock>

 Volatiles, synchronization contracts
 ConcurrentHashMap <???, VectorClock>

Composite Keys

 AtomicLongFieldUpdater.CAS(Object o, long offset, long v)
 param 0 + param 1

 Volatile field “abc” of object o
 object + field name

 AtomicInteger.set() & AtomicInteger.get()
 object

 ConcurrentMap.put(key, value) & ConcurrentMap.get(key)
 object + param 0

Solved Problems

 Composite keys for contracts and volatiles
 Generate them on-the-fly

 Avoid unnecessary keys creation
 ThreadLocal<MutableKeyXXX> for each CompositeKeyXXX

 Loading of classes, generated on-the-fly
 Instrument ClassLoader.loadClass()

Solved Problems

 Don’t break serialization
 compute serialVersiodUid before instrumentation

 Caching components of dead clocks
 when thread dies, its time frames doesn’t grow anymore
 cache frames of dead threads to avoid memory leaks
 local last-known generation & global generation

DRD in Real Life: QD

QD + DRD

QD

 ✔ 6 races found

DRD in Real Life: MARS UI

MARS + DRD

MARS

 ✔ 5 races found

DRD Race Report Example

WRITE_READ data race between current thread Thread-12(id = 33) and thread Thread-11(id =
32)

Race target : field my/app/DataServiceImpl.stopped

Thread 32 accessed it in my/app/DataServiceImpl.access$400(line : 29)

--------------------------------Stack trace for racing thread (id = 32) is not available.------------

-------------------------------------Current thread's stack trace (id = 33) : ---------------------------

at my.app.DataServiceImpl.stop(DataServiceImpl.java:155)

at my.app.DataManager.close(DataManager.java:201)

...

DRD Advantages

 Doesn’t break serialization

 No memory leaks

 Few garbage

 No JVM modification

 Synchronization contracts
 very important: Unsafe, AbstractQueuedSynchronizer

Links

 http://code.devexperts.com/display/DRD/:
documentation, links, etc

 Contact us: drd-support@devexperts.com

 Useful links: see also on product page
 IBM MSDK
 ThreadSanitizer for Java
 jChord
 FindBugs

 JLS «Threads and locks» chapter

Q & A

