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Abstract in English—Despite its popularity as a data interchange 

format, JSON still lacks a commonly accepted data model and is 

defined only syntactically. Because of its simplicity, it may appear 

that the textual representation already conveys all the needed 

meaning; however, in the context of global Internet-centric 

applications, where many different technologies interact, the lack 
of defined semantics can lead to serious interoperability issues. 

In this paper we explicitly attack this problem: we look at the 

most common JSON interpretations and examine the potential 

ambiguities of JSON, and then we introduce Jsonya/dm – a 

strictly defined, language-neutral data model for JSON, which 

allows consistent interpretation of JSON regardless of the specific 

environment. To evaluate it, we examine 63 existing JSON 

libraries for 10 programming languages; the analysis confirms 

that Jsonya/dm both reflects the established conventions and 
addresses the potential incompatibilities between these libraries. 

Keywords—JSON, information model, data model, 

interoperability 

Abstract in Russian—Несмотря на свою популярность, формат 

обмена данных JSON до сих пор не имеет общепринятой 

модели данных и дефинируется только синтаксически. Из-за 

его простоты может показаться, что текстовое 

представление уже передает все необходимые значения. 

Однако, в контексте глобальных интернет-ориентированных 

приложений, где множество разных технологий 

взаимодействуют между собой, отсутствие определенной 

семантики может привести к серьезным проблемам 
совместимости. 

В этой статье мы прямо атакуем эту проблему: мы 

рассматриваем самые популярные интерпретации JSON, 

исследуем его потенциальные двусмысленности, а затем 

вводим Jsonya/dm - строго дефинированную, языково-

нейтральную модель данных для JSON, предлагающую 

одинаковую интерпретацию независимо от конкретной 

среды. Для оценки модели мы рассматриваем 63 

существующих JSON библиотек для 10 языков 

программирования. Анализ подтверждает, что Jsonya/dm  

одновременно отражает установленные конвенции и 

исправляет потенциальные несовместимости между этими 
библиотеками. 

Keywords—JSON, информационная модель, модель 

данных, совместимость 

I.  INTRODUCTION 

The JavaScript Object Notation (JSON) [1] celebrates a 
significant growth in popularity and is often applied for the 
integration of the technologies used in global Internet-centric 
applications. Because JSON is defined only syntactically, 
ensuring that all parties interpret it the same way is 
responsibility of the engineers; for large systems with fuzzy 
boundaries this can become a real challenge. 

What makes it even harder is that most developers 
implicitly assume “semantics” biased towards the concrete 
tools they use and fail to observe that others may process JSON 
differently. Such interpretation clashes may cause 
interoperability issues when later the system expands. Most 
approaches to tackle this issue are built around either a specific 
environment or another data-interchange format; although they 
suit the particular purpose, none of them defines strict, 
language-neutral meaning without introducing significant 
complexity. 

In particular, they fail to extend some of the fundamental 
properties of JSON, namely to be “the intersection of all 
modern programming languages” and “the thing that 
everybody can agree on, so it's really easy to pass data back 
and forth” [2]. This is not a surprise—programming languages 
and run-time environments are very different, so deriving a 
data model from one of them is likely to discriminate some of 
the others. This led us to the following idea: if we want an 
interpretation which extends the above two principles, then we 
need to derive it from the specifics of a large enough set of 
environments. This is what we do in this paper. 

To define such a model we started from the syntax of JSON 
and identified the elements which are prone to multiple 
interpretations. For each possible meaning we analysed the 
impact it would have on the different environments, and 
incorporated the most interoperable ones into the unambiguous 
data model Jsonya/dm. Most challenging were the 
interpretation of numbers and the order of object members, but 
we hope to have achieved acceptable solutions for them. To 
evaluate our data model we analysed 63 JSON parsing libraries 
for 10 programming languages and compared the data models 
they use to ours. 

We determined that Jsonya/dm agrees with the design 
decisions for which the majority of libraries were in unison and 
provides a reasonable unification otherwise. If applied, 
Jsonya/dm can bring consistent JSON interpretation to a wide 
variety of programming languages. As a drawback, if 
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interoperability is less important, some environments may 
achieve better performance or convenience with a data model 
suited towards their specific needs. 

This paper attempts to resolve the data model ambiguities 
of JSON while its toolset is still rapidly evolving. Its main 
contributions are the following: 

 an overview of some of the currently used JSON data 
models (Section II); 

 analysis of the ambiguous features of JSON and the 
general properties of a data model resolving them 
(Section III); 

 the unambiguous JSON data model Jsonya/dm 
(Section IV); 

 assessment of how the data model aligns to current 
trends based on the analysis of 63 JSON libraries for 
10 programming languages (Section V). 

II. EXISTING APPROACHES 

Although to this point no standard JSON data model 1 
exists, the lack of such has not prevented numerous successful 
JSON applications. In this section, we describe some of the 
data models frequently implied by software engineers. 

A. JavaScript Interpretation 

The origin of JSON have led many people to assume that it 
should be interpreted the same way as a JavaScript interpreter 
would do; thus using the data model of JavaScript as a data 
model of JSON is very common. This raises the question: if 
JSON is a subset of the ECMAScript Standard [3], should the 
same be implied for its interpretation? 

One of the properties of this data model is that JSON 
numbers should be interpreted as IEEE 754 [4] 64-bit floating-
point values. Examples of this assumption can easily be found 
around the Internet 2 3 4 . This seems natural for JavaScript-
intensive applications, and may also work well for other 
languages. 

Such numeric interpretation, however, can complicate some 
applications: JSON processing in environments without IEEE-
754 floats would be difficult, but a bigger concern is that “since 
floating point values are converted to and from ASCII 
representations, we could lose some least significant digits 
during the translation” [5]. Also, the precision guaranties may 
be inappropriate for certain applications [6], [7], and even if 
IEEE-754 floats are appropriate, this data model may still be 

unsuitable because JSON lacks +Inf and NaN values. 

Treating JSON objects as JavaScript ones also brings an 
issue. Although the ECMAScript Standard states that “The 
mechanics and order of enumerating the properties ... is not 

                                                        
1
 In this paper we use the terms data model, information model, and 

metamodel as “the constraints on the information entities used to model 

real world information”. 
2
 http://deron.meranda.us/python/comparing_json_modules/  

3
 http://blog.mozilla.com/dherman/2011/05/25/a-semantics-for-json/  

4
 http://lethargy.org/~jesus/writes/why-json-sucks  

specified” [3:92], the JavaScript interpreters of many web-
browsers enumerate object members in the order of their 
assignment. Developers unaware that this behaviour is 
implementation-specific can depend on it and prevent 
interoperating software from using JSON objects as “unordered 
collection of zero or more name/value pairs” [1:1]. For 
environments without an efficient ordered name/value 
collection like  LinkedHashMap5 this may be problematic. 

B. Metamodel of Another Data-Interchange Format 

JSON is relatively young and its toolset is still developing, 
so it may be natural to consider it as a simplification of another 
data format, and to imply the same for its data model. As XML 
is still ubiquitous, it is often assumed that JSON should be 
somewhat compatible to it. For example, Wilde and Glushko 
identify JSON as “an alternative physical model for XML 
metamodels” [8:48], tools converting between XML and 
JSON [9], as well as methods to use XML technologies with 
JSON, including XSLT [10], XQuery [11], [12], and 
XForms [13], [14] are available. 

Employing the information model of XML, however, is not 
trivial. First, identified by Wilde and Glusko as the “Tree 
trauma” [15] is the presence of multiple standard metamodels 
for it. Secondly, due the substantial differences between the 
two formats, there is no standard way to convert between 
JSON and XML. Finally, the complexity of XML may prevent 
JSON from being used as “The Fat-Free Alternative to XML”6. 

YAML, less popular than both XML and JSON7 but still 
widely recognised, is another possible alternative. It is stated as 
a “natural superset of JSON” [16], so many YAML 
technologies can be applied to JSON too. In addition, its 
specification explicitly defines the information model of what 
is available after parsing. 

However, YAML is less adopted than XML, so the number 
of technologies that could be benefited from is limited. It 
shares some design characteristics with JSON, but is still 
significantly more complex; with its metamodel the simplicity 
of JSON would not be taken advantage of. Finally, its 
metamodel is still loosely defined, e.g.: “The supported range 
and accuracy depends on the implementation, though 32 bit 
IEEE floats should be safe.” [16:74], which means that 
additional negotiations between software engineers may still be 
necessary. 

C. Other 

1) Syntax Level Only 
Another approach is to accept JSON only as syntax, so each 

developer can pick the most suitable data model for their needs. 
For example, if an application needs to model sequences of 
command/argument instructions, its developers may choose to 
interpret objects as ordered multi-maps in order to represent the 
instructions more conveniently. This is legal because “names 

                                                        
5
 http://docs.oracle.com/javase/7/docs/api/java/util/LinkedHashMap.html  

6
 http://www.json.org/fatfree.html  

7
 at least in search volume: 

http://www.google.com/trends/?q=XML,+JSON,+YAML  
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within an object SHOULD be unique” [1:3], i.e. this is not 
mandatory. 

In fact, working above the syntax level may sometimes not 
be even needed, e.g. for certain stream processing tasks. The 
main drawbacks of this approach, however, are that in large 
systems format specifics like the above one must be explicitly 
managed in order to ensure that all software components can 
handle them. 

2) Host Language Types 
Most programming languages have constructs similar to the 

JSON ones, so many parsers just use the closest possible native 
data type. This simplifies processing and allows convenient 
and efficient manipulation. 

However, different languages have differences in the 
corresponding data types, so whether a value is encoded as a 
string or a number may be irrelevant for PHP and Perl, but is 
essential for C++ and Java. Other incompatibilities may arise 
from the meanings of null and false, associative arrays, etc. 
Since there are often multiple suitable data types for the same 
JSON value, incompatibilities may occur even between 
programs written in the same language. 

3) Custom Object Model 
Finally, a common way to define a metamodel is via an 

object model defined as a set of custom data types. Many 
libraries employ this approach; it gives explicit control over the 
available information and allows easy specification of the 
information model via the documentation of these types. 

In general, this approach does not conflict with ours, and 
can be used with libraries conforming to Jsonya/dm. Without 
an explicit language-neutral definition, however, the data 
model is often influenced by the capabilities of the host 
language and may be unsuitable for other environments. 

III. ANALYSIS 

To some readers, JSON may seem sufficiently intuitive and 
unambiguous. For example, the following JSON code uses all 
types of values and yet its interpretation seems rather obvious: 

{ 

    "name": "Evgeni V. Plushenko", 

    "birth_date": { 

        "year": 1982,  

        "month": 11,  

        "day": 3 

    }, 

    "best_scores": [ 

        261.23,  

        91.30,  

        176.52 

    ], 

    "status": { 

        "verified": true,  

        "locked": false,  

        "external_record": null 

    } 

} 

Even for this trivial definition, however, some questions 
can be asked: Would the record be same if we had written 

91.3 instead of 91.30?  Could the external_record field 
have been omitted? 

For simple web applications the answers to such questions 
may be irrelevant. This demonstrates one important issue: the 
ambiguities of JSON are often neglected, because they are not 
apparent in basic use cases. In this section we will examine the 
aspects of JSON that may cause inconsistent interpretation with 
respect to the following styles of representing parsing results: 

 Mutable data-structures, from which the information is 
efficiently accessed and manipulated. Predominant in 
imperative languages, usually based on object 
properties, associative arrays, or specifically designed 
data types.  

 Immutable, and usually purely functional data 
structures, from which the information can be 
accessed, and modified versions of it can be efficiently 
created. Most common in functional languages, but 
also used in imperative languages for better 
concurrency or structural sharing. 

 Constant in-memory representation, from which the 
information can be efficiently accessed, but no 
modification mechanism is provided. 

In addition, several other aspects must be considered for the 
data model, including the availability of libraries and system 
resources, the data model of the environment itself, and 
whether the information is stored on-disk or in memory. 

Although we want to provide a solution appropriate for a 
wide enough variety of technologies, we cannot consider every 
possible environment and programming language. For 
example, paradigms such as logic programming or 
concatenative programming languages will not be taken into 
account. 

A. Objects 

The ambiguities of the interpretation of objects, as well as 
of other elements, are caused by two main uncertainties: which 
aspects of the JSON representation are essential and which are 
not, and what values are allowed and what are invalid. 

1) Order of Fields 
One of the most important ambiguities is whether the order 

of object members, which we will call fields, is essential or not. 
For example, do the two object items in the following example 
represent identical information? 

[ 

    {"a": 1, "b": 2},  

    {"b": 2, "a": 1} 

] 

Although RFC 4627 states that objects are unordered, bug 
reports against libraries not preserving the order can easily be 
found 8 9 10 . In fact, considering the order of fields essential 

                                                        
8
 https://github.com/flori/json/issues/66  

9
 https://github.com/akheron/jansson/issues/15  

10
 http://code.google.com/p/json-simple/issues/detail?id=51  
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allows some problem domains to be conveniently modelled and 
is useful if JSON files are both human- and machine-processed. 

The second reason why unorderness is neglected comes 
from the possible representations of associative arrays. We 
identified four most common representations: 

 Plain lists or arrays of pairs are used in environments 
where implementation of more sophisticated data 
structures is unfeasible. Searching a value by name is 
an O(N) operation, but field order is preserved and can 
be manipulated. 

 Sorted sequences provide O(log N) access without 
complicated data structures and are suitable for simple 
mutable or constant object representation. With 
structures such as balanced binary trees (or B-Trees for 
on-disk storage) can also provide O(log N) 
modification in both mutable and immutable setting.   

 Hash tables are the standard structure in many 
languages including Java, Python, Perl, and Ruby (up 
to 1.8.x). They provide O(1) access and manipulation 
in mutable object representation, but do not define any 
useful traversal order. They are not suitable for 
immutable representations, because the O(1) 
performance cannot be achieved.   

 Linked hash tables are hash tables enhanced with 
additional pointers to maintain the order of elements in 
a linked-list-like manner. This complication can 
slightly impact resource usage, but the O(1) 
performance is still retained. PHP and Ruby 1.9 use 
them for their associative array constructs, and library 
implementations are available for most popular 
programming languages. Like regular hash tables, they 
are not suitable for immutable setting. 

As visible, half of the approaches naturally preserve the 
order of the fields, and the other half do not. Whether hash 
tables or linked hash tables should be used is often disputed. 
Ruby is an example of a language which moved from 
unordered to ordered hash maps in its version 1.9.1 release11. A 
change in the opposite direction can be seen in Perl 5.8.1, in 
which ‘Mainly due to security reasons, the “random ordering” 
of hashes has been made even more random’1213. 

Specifying lack of order guarantees, however, may not be 
sufficient to prevent developers from inadvertently relying on 
internal details. Other than the JavaScript example we already 
mentioned, the documentation of the Dictionary generic 
class from .NET states that “The order in which the items are 
returned is undefined”14, yet, developers have noticed that the 
CLR implementation uses the insertion order as an order for 
traversal 15 16 . Not only is this assumption implementation 

                                                        
11

 http://svn.ruby-lang.org/repos/ruby/tags/v1_9_1_0/NEWS 
12

 http://cpansearch.perl.org/src/JHI/perl-5.8.1/pod/perldelta.pod 
13

 Pointed out by Marcus Ramberg: http://mjtsai.com/blog/2009/ 

02/05/ordered-hashes-in-ruby-19/#comment-472940 
14

 http://msdn.microsoft.com/en-us/library/xfhwa508.aspx 
15

 http://stackoverflow.com/q/154307/390389 
16

 http://forums.asp.net/t/1267419.aspx/1 

dependent, but it also does not hold if some elements were 
removed before new ones were inserted. 

Even if the order of enumeration looks random, leaving it 
underspecified breaks the (mostly incorrect) assumption that 
the application of the same algorithm to the same data produces 
the same result. In contrast, the other three representations 
(plan lists, sorted sequences and linked hash tables) do not have 
such an issue—no matter whether they preserve the order or 
not, the same program using them would work the same way 
regardless of the data structure implementation details. 

It turns out, that there is no best option: the plain list and 
linked hash map implementations break the unorderness of the 
JSON objects, plain hash-maps may lead to inconsistent 
behaviour, and sorted sequences require O(log N) access time. 
In immutable setting, however, sorted sequences have a clear 
advantage over the rest. 

2) Field Uniqueness 
The fact that in JSON objects the names are recommended 

but not required to be unique raises some important questions. 
For example, do the items of the following array define 
equivalent objects? 

[ 

    {"x": 1, "y": 2},  

    {"x": 1, "y": 2, "x": 1}, 

    {"x": 0, "y": 2, "x": 1},  

    {"x": 1, "x": 1, "y": 2} 

] 

 

Depending on the parser and the used data structures, at 
least 5 different equivalence configurations are possible, 
ranging from all distinct to all equal. To avoid these 
complications, and because many JSON tools cannot handle 
repeated field names, we will simply consider such JSON files 
invalid. 

Even if all fields have unique names, two other questions 
arise: are there any restrictions on the names of the fields, and 
how should they be compared? 

As the RFC states merely that the name from the 
name/value pair is a string, we may assume that no further 
restrictions are imposed. This means that empty strings and 
names containing spaces or non-Latin characters can be used as 
field names. This may break certain attempts to map them to 
host-language identifiers, or at least require that a fallback 
mechanism to access fields by strings is provided, but we could 
not identify any reasonable alternative. 

To answer how names should be compared, e.g. whether 

"J" is the same as "\u004a" we will analyse the ambiguities 
of strings in Section III-C. Besides that, one particular issue is 
whether field names are case-sensitive or not. With risk of 
discriminating some environments, and because case-
sensitivity of Unicode characters is far from trivial, we will 
assume the more popular convention, i.e. that field names are 
case sensitive. 

http://svn.ruby-lang.org/repos/ruby/tags/v1_9_1_0/NEWS
http://cpansearch.perl.org/src/JHI/perl-5.8.1/pod/perldelta.pod
http://mjtsai.com/blog/2009/%2002/05/ordered-hashes-in-ruby-19/#comment-472940
http://mjtsai.com/blog/2009/%2002/05/ordered-hashes-in-ruby-19/#comment-472940
http://msdn.microsoft.com/en-us/library/xfhwa508.aspx
http://stackoverflow.com/q/154307/390389
http://forums.asp.net/t/1267419.aspx/1


B. Numbers 

As already stated in Section II-A, the lack of number 
specification beyond the syntax layer is an issue affecting 
certain applications, and a potential source of interoperability 
problems. Although JSON numbers have an integral part and 
optionally a fractional part and an exponent, certain details are 
not clear: 

 Are negative and positive zeros (-0 and 0) different? 

 Is there, like in the C-like languages a difference 
between integers and floating point numbers, e.g. are 
130 and 130.0 different? 

 Are the number of trailing zeroes and the value of the 

exponent essential, e.g. do 130, 130.0, 130.00 and 
13e1 encode distinct values? 

 Is there a particular precision of the numbers, e.g. can 
we accurately define 0.123456789012345678901? 

 Is there a limit on the range of the numbers, or can they 
be arbitrarily large? 

These questions are most often answered depending on the 
available host language types. For example, the C library 
Jansson parses numbers into either double or long / long 

long depending on whether their textual representation 
contains a dot or an exponential part17. In Java, depending on 
the passed options, Jackson 18 , can parse values into 
BigDecimal objects, which provide arbitrary precision and 
retain trailing zeroes, thus 130.0 and 130.00 would be 
different. 

The principle to be the intersection of the popular 
environments is hardly applicable here. First, if we really want 
to address the majority of languages, we must probably limit 
ourselves to 32-bit integers—a range insufficient for many 
applications. Secondly, if a limit is imposed, the numbers 
beyond it would have to be encoded as JSON strings, which 
would not be a very elegant solution. 

Another approach would be to state that there are no 
restrictions, but implementations with limited capabilities may 
fail to process certain values. In fact, this is inevitably true for 
other types: some environments may fail to parse non-Latin 
characters, and most will fail to load strings longer than 232 
characters, yet it would be unreasonable to solve these 
problems by restrictions. Not stating limits, however, is not 
sufficient; applications still need precision guarantees, so that 
numbers are not unexpectedly truncated by relaying software 
components. 

C. Strings 

Although relatively intuitive, strings may still be prone to 
misinterpretations: 

 Does escaping matter, e.g. are "K" and "\u004b" 
parsed as different values? 

                                                        
17

 http://www.digip.org/jansson/doc/2.3/conformance.html#real-vs-

integer  
18

 http://jackson.codehaus.org/  

 Can we use invalid Unicode, e.g. standalone surrogate 
characters, code points larger than 0x10FFFF, or 
illegal UTF-8 byte sequences? 

 Does the fact that characters outside the Basic 
Multilingual Plane are escaped with two surrogate 
pairs imply that UTF-16 should be used?  

 Are there any additional limits due to interoperability 
considerations, such as strings to not contain nil 
(\u0000), or more than 231-1 characters? 

Luckily, most of these can be easily dealt with. Related to 
the last question, Bryan addressed an interesting issue in the 
JSON Group19 by pointing out that the RFC implies a limit of 
996 octets for JSON strings, due to the stated 8-bit 
compatibility (as defined in RFC 2045 [17]). Fortunately, this 
restriction was not intended, and even if it were, it would only 
affect the UTF-8 encoding. 

D. Other Ambiguities 

Another source of ambiguities may be the interpretation of 
empty or null-like values. All of the following array items 
represent some kind of empty value: 

[false, null, 0, "", {}, []] 

In certain environments, some of these are traditionally 
indistinguishable; for example C uses 0 for a false value, in 
Lisp empty lists are represented as a NIL, in PHP empty 
regular (indexed) and associative arrays are the same value, etc. 

Because some programming languages provide type 
coercion between numbers and strings, it is natural to also ask 
whether the same value written as JSON number and JSON 

string would yield the same result, e.g. 123 and "123". 

Finally, the formatting of JSON files (e.g. which values are 
grouped into a single line) is usually lost after a round-trip 
encoding. This may not be desirable when the file is edited 
manually, so it may be appropriate to retain some formatting 
details in the resulting object representation. The same may be 
even more valuable if non-standard extensions such as 
comments are used. 

E. Design Considerations 

Our goal of resolving the listed ambiguities is further 
refined by the following four main design ideas: 

 Explicitness. To avoid incompatibilities caused by 
conflicting assumptions, the metamodel should 
explicitly and unambiguously define which JSON 
details are essential and which are not. 

 Determinism. To achieve reliability, the same JSON 
text should denote the exact same information 
regardless of the concrete environment, and any loss of 
information, including numeric precision, must be 
controllable. 

 Detail concealment. To avoid potential 
incompatibilities, the metamodel structure should not 

                                                        
19

 http://tech.groups.yahoo.com/group/json/message/1795 
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http://www.digip.org/jansson/doc/2.3/conformance.html#real-vs-integer
http://jackson.codehaus.org/
http://tech.groups.yahoo.com/group/json/message/1795


expose any information not strictly defined as 
essential. 

 Minimalism. Following the core JSON principles, only 
information which is useful to a wide enough set of 
applications should be included. 

For some specific uses these restrictions can be too costly. 
If less strict semantics are more appropriate (e.g. due to 
performance reasons), such should be achieved outside the 
bounds of our metamodel. 

IV. JSONYA/DM 

Following these ideas we designed Jsonya/dm—an 
unambiguous information model aiming to provide stable 
common assumptions between parties communicating with 
JSON. In this section we define it and describe some of its 
properties. 

A. The Metamodel 

The fundamental building block of Jsonya is the 
information entity called jsonya element, or simply element, 
which represents the essential information of a JSON fragment, 
excluding certain details such as spacing and order of object 
members. Each element can be distinguished as one of the 7 
kinds: string, decimal, object, array, true, false, or null. They 
correspond to the 7 types of values from http://json.org/: string, 
number, object, array, true, false, null. 

String elements represent Unicode strings, i.e. finite 
sequences of zero or more Unicode code-points (all valid 

1112064 code-points from U+0000 to U+D7FF and from 
U+E000 to U+10FFFF) [18]. String elements do not describe 
how strings were encoded to bytes or how characters were 
escaped. 

Decimal elements represent the exact values of finite 
decimal numbers (rational numbers with denominator in the 
form of 2N 5M) and nothing more. They correspond bijectively 
to the set of finite decimal numbers, so they cannot contain 
special values such as 1/3 or positive infinity. The JSON texts 

‘0’, ‘-0’, ‘0.0’ and ‘0e1’ all correspond to the same decimal 
element. 

Object elements are associative arrays whose keys are 
distinct strings and whose values are elements. The key-value 
pairs are referred to as fields, and we say that each object 
element contains its values. Objects are unordered, so any 
observable enumeration order should depend only on their keys 
and values. 

Array elements represent finite sequences of zero or more 
elements, which have a non-negative integer size, and for each 
integer i in [0, size - 1] an element denoted as its i-th item. Each 
array element contains its items. 

True, false, and null elements represent the true, false 

and null values respectively. Their only observable 
information is their kind. 

All elements are finitely nested, i.e. the contains relation 
forms a finite rooted tree of elements. There is no other 
observable information. 

B. Domain Enumerability 

Although the above explanation clearly describes the 
information model, a more formal definition may also be 
valuable. We considered several possible meta-metamodels to 
define Jsonya/dm, but none of them seemed suitable for such a 
bottom-level data model. For this reason will simply define the 
set of all distinct elements by assigning a unique non-negative 
integer to each of them. 

 

Figure 1.  Bijective function computing elements from indices. Here ++ 

denotes string and array concatenation and object union. 

Figure 1 shows the function element(n), which, from given 
index computes its corresponding element. For example 

element(1000000) returns ["D", [null], false, true]. 

http://json.org/


The function is bijective, i.e. it defines a one-to-one 
correspondence between the non-negative integers and the set 
of all Jsonya/dm elements. Its inverse function, which we will 
not include here, also has a similar structure. 

The mapping is based on the Cantor pairing function [19], 
slightly modified to work with non-negative integers instead of 
with positive ones:  

 

The x(n) and y(n) from Figure 1 are its inverse functions. 

Most elements are encoded in head/tail manner with the 
pairing function. Non-zero decimal elements are decomposed 
to the form of M 10E, where M is a positive integer non-
divisible by 10 (without trailing zeroes), and E is an integer. 
The object fields are sorted by the index of their names—each 
consecutive name is encoded as the difference to the index of 
the previous field name. This disallows field name repetition 
and provides unique (canonical) encoding of objects. 

Although the presented encoding scheme can be used for 
other purposes like the generation of testing values, it was 
designed merely to define the set of distinct Jsonya elements. 
For practical use it may be modified, e.g. to return human-
readable strings more often. 

C. Properties 

The metamodel follows the identified design principles. 
Strings can contain all valid Unicode code points, because the 
intersection principle could not be applied to them—the set of 
characters consistently usable in the majority of environments 
would be too restrictive (e.g. code points 1 to 127). 

The most radical design decision in Jsonya/dm is the way 
numbers are modelled. As the intersection principle could not 
be applied here too, decimals were chosen because of their 
importance for various applications [20], and because they can 
be encoded to and decoded from text without any loss of 
information. Their name differs from the name of the 
corresponding JSON values to convey the narrowed meaning. 
As an unintended consequence, all the 7 kinds of elements start 
with distinct letters, which may in some cases be useful. 

Object values are usually used to store struct-like records 
with fixed set of fields, dictionary-like mappings with 
homogeneous values, or sometimes hybrids of the two. The 
information in jsonya objects is completely sufficient for these 
purposes. The intersection principle was applied to rule out the 
field order from the essential information. The range of 
possible field names however was not limited, and all distinct 
jsonya strings are acceptable and different, because the 
commonly usable subset would be too restrictive (e.g. only the 

characters [a-z_]). 

Arrays are most often used as lists of homogeneous items, 
as fixed size tuples, or as hybrids of both. Jsonya/dm reflects 
their widely accepted meaning and steps further to always 
allow arrays to be distinguished from other kinds of elements. 
In fact, empty arrays, empty objects, empty strings, false and 
null are explicitly defined as distinct values. Also strings 
containing decimal digits are distinct from decimals, and 

objects containing index-like keys, e.g. {"0": "a", "1": 

"b"}, are distinct from arrays with the same values, e.g. 

["a", "b"]. 

We consider the mapping between JSON and Jsonya/dm 
straightforward, and therefore omit it from this paper. The 
defined set of values can be used for other representation 
formats of JSON-based values, e.g. binary representations, or 
representations decomposed for more efficient searching. 

D. Impact on Implementations 

Because for some environments, this metamodel may be 
too sophisticated, we do not state that all conforming parties 
must fully implement it. Instead, the particular limitations can 
be negotiated explicitly, and appropriate measures to not distort 
relayed information must be taken if necessary. 

The elements most likely to be problematic for certain 
environments are the decimals. To avoid overhead, explicit 
limits (e.g. up to 15 decimal digits) can be negotiated, or 
parties that do not perform arithmetic operations but merely 
relay values can use some text-based in-memory 
representation. 

It turns out, that all essential information, i.e. all 
information observable from jsonya elements is the following: 

 the kind of each element (object, array, decimal, 
string, true, false or null); 

 for object elements: the set of the names (keys) of its 
member fields; 

 for object elements: from given string, the value of the 
field with that name; 

 for array elements: their size, i.e. the number of items 
they contain; 

 for array elements: from given index, the element at 
that index; 

 for decimal elements: the number they represent; 

 for string elements, the Unicode text they represent. 

Because of this, implementing a Jsonya/dm conformant 
object model can be very simple. The following example 
represents one possible interface for in-memory Java 
representation: 

public interface Element { 

    String kind(); 

    Set<String> keys(); 

    Element field(String name); 

    Element item(int index); 

    int size(); 

    String asString(); 

    BigDecimal asDecimal(); 

} 

E. Limitations 

The last example also shows that Jsonya/dm does not 
prescribe exactly how an object model can be designed. This is 



done purposely in order to keep its definition small and simple. 
For example, the following questions are not answered: 

 How is the unorderness of the keys() property going 
to be achieved? Should it be via a sorted or hashed 
implementation? 

 What will happen if a non-existing field or item is 
requested, or a method non-applicable for the element 
kind is invoked?  

 Java's BigDecimal distinguishes equal numbers with 
different scale, e.g. 12.0 from 12.00. How will this 
additional information be concealed? 

Jsonya/dm also does not define how the “inessential” 
information can be handled in the cases when such is needed. 
How the order of fields or the particular formatting can be 
associated with the elements without polluting the object model 
is left to the tool engineers. 

Finally, although the ecosystem of JSON is still maturing, 
many tools have already reached a relatively stable state. The 
introduction of a metamodel at this stage is threatened by 
potential incompatibilities with established technologies, 
especially ones that intensively rely on the information  
model such as JSON Schema [21], JSONPath 20 , or JSON 
Pointer  [22]. 

V. EVALUATION 

To assess how the proposed data model aligns with current 
trends, we analysed a number of JSON libraries, identified the 
data models they use, summarised their properties and 
compared them to Jsonya/dm. 

A. Methodology 

From August to September 2011 we performed the 
following: 

 We selected the 10 most discussed 21  programming 
languages according to LangPop.com22, and for each 
of these languages selected all libraries listed in its 
corresponding section in http://json.org/. 

 We identified the data model of each library by 
analysing its source code and documentation, and 
writing experimental programs in order to obtain the 
following information: 

o How was the JSON information provided, 
e.g. object model or events? 

o Was the string representation (e.g. character 
escaping) exposed? 

o What was the supported range of characters? 
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 http://goessner.net/articles/JsonPath/ 
21

 The most discussed languages instead of the most popular were 

selected because they covered more paradigms and were likely to gain 

more popularity in future. 
22

 http://langpop.com/#normalizeddiscussion  

o Was the textual representation of numbers 
(i.e. the exact way they were written in) 
exposed? 

o Were integers and non-integers treated 
differently and what was the supported range 
and precision for integral or non-integral 
numbers? 

o Was the order of object fields exposed, and 
what data structure was used to represent 
objects? 

o Were false, null, empty objects and 
empty arrays distinguishable? 

o How was the JSON information modelled, 
e.g. standard types or custom object model, 
mutable or immutable types? 

 We sent preliminary data of the analysis to the JSON 
group23, and made a small number of corrections based 
on the received feedback. 

 We summarised the results and used them to assess the 
properties of Jsonya/dm in order to identify whether 
the already established tendencies were captured and 
whether the areas where libraries are too different were 
addressed. 

B. Results 

The listed libraries were 72 (C++: 8, C: 11, Java: 21, 
Python: 4, Haskell: 2, JavaScript: 2, Ruby: 3, C#: 12, PHP: 6, 
Lisp: 3), of which 9 (C++: 2, C: 2, Java: 3, C#: 2) were 
excluded for various reasons. Here is the summary of the 
collected information24 for the remaining 63 libraries: 

 JSON information:  

o custom object model: 31,  

o object model of standard types: 22 + 3*,  

o mixed standard/custom types: 3,  

o call-backs or tokens: 3.  

 String representation (escapes):  

o hiden: 56 + 1*,   

o exposed: 6.  

 Character set:  

o Unicode: 37 + 15*,  

o Unicode without nil: 2,  

o more limited: 7.  

 Integer or fractional discrimination:  

o based on the presence of [.Ee] character: 
37 + 4*,  
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 http://tech.groups.yahoo.com/group/json/message/1751  
24

 ‘*’ denotes “usually yes, but with some exceptions” 

http://json.org/
http://goessner.net/articles/JsonPath/
http://langpop.com/#normalizeddiscussion
http://tech.groups.yahoo.com/group/json/message/1751


o no discrimination: 19,  

o based on the value of the number: 3. 

 Textual representation of numbers:  

o hidden: 43,  

o partly exposed (e.g. only in certain cases or 
trailing zeroes only): 13,  

o exposed: 7.  

 Non-integer range and precision:  

o IEEE 754 64-bit float: 33 + 9*,  

o IEEE 754 32-bit float: 3,  

o manual (textual representation): 7,  

o unlimited decimal: 5 + 5*,  

o unlimited rational: 1.  

 Integer range:  

o unlimited: 15 + 2*,  

o int64: 10 + 6*,  

o same as fractional: 11,  

o int32/int6425 depending on the platform: 6,  

o int30/int62 depending on the platform: 1,  

o int32: 2 + 1*,  

o int64 ∪ uint64: 2, 

o manual (textual): 7. 

 Field order:  

o exposed: 29 + 7* (22: linear structures, 7: 
linked hash table, 7: platform dependent 
structures),  

o hidden: 20 + 2* (16: hash tables, 6 sorted 
structures),  

o partly exposed or depending on the 
environment: 5.  

 Null-like values:  

o all distinguished: 51 + 6*,  

o issues to handle or distinguish null, false, 
empty arrays or empty objects: 6.  

 Mutability:  

o mutable: 53,  

o immutable: 4 + 3*,  

o call-backs or tokens: 3. 

                                                        
25

 intN and uintN denote N-bit signed and unsigned integers. 

C. Interpretation 

The analyses of these libraries in the context of the 
properties of Jsonya/dm outline the following: 

 The discrepancy in number handling justified the 
seemingly radical approach taken by Jsonya/dm. 
Unfortunately, most libraries could not handle 
arbitrarily large numbers, and handling limited decimal 
numbers accurately requires additional effort. 

 Jsonya/dm treats strings in agreement with the majority 
of libraries. Although some environments did not fully 
support Unicode, no suitable smaller character set 
could be identified. 

 The fact that more than half of the libraries preserved 
and exposed the field ordering is worrying, as many 
developers may have considered this information 
essential. Still if interoperability is desired, the 
approach of Jsonya/dm is more appropriate. 

 The proposed treatment of special values and field 
names would cause issues only in small number of 
libraries. 

 As a drawback to our data model, the majority of 
libraries used mutable object models or object models 
based on standard system types, but Jsonya/dm does 
not address how such can be efficiently designed. 

D. Threats to Validity 

The following may have affected the accuracy of the 
performed evaluation: 

 All libraries were considered equal, although they vary 
significantly in features, quality and popularity. 
Therefore, certain libraries may have a much wider 
influence than others, which was not considered in our 
survey. 

 Some of the libraries may have not been analysed 
correctly, e.g. used in an incorrect way. We believe the 
percentage of such errors should be small. 

 As several months have passed between the analysis, 
and the completion of this paper, some of the libraries 
may have changed the data model they use. 

VI. CONCLUSION 

We presented Jsonya/dm—an unambiguous data model for 
JSON. We analysed some widely used alternatives and 
outlined some of their deficiencies. We identified the common 
ambiguities of JSON and discussed how they can be resolved. 
We presented the data model and defined the set of its elements 
via a bijection with the set of non-negative integers. We 
discussed its properties and limitations, showing that if 
modifications are not considered, the interfaces of the adhering 
object models can be simple. We summarised the properties of 
the 63 JSON libraries analysed during the evaluation, showing 
that Jsonya/dm is aligned with established tendencies and 
attacks the common causes of discrepancy. 



While we have already built experimental object models, 
assessing how easily Jsonya/dm can be implemented in various 
environments remains a task for the future. Specifically, its 
impact on performance, code size and ease of use needs to be 
assessed and appropriate data structures and design guidelines 
need to be suggested. Although mapping JSON code to 
Jsonya/dm elements is straightforward, a formally defined 
parser can also be a valuable addition. 

We believe that the JSON ecosystem would greatly benefit 
from an explicitly defined information model like the presented 
one. It is our hope that Jsonya/dm will be accepted by the 
JSON community, and we look forward to integration with 
some of the already developed JSON tools. 
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