
Jsonya/dm: A Univocal JSON Interpretation

Miloslav Sredkov

Faculty of Mathematics and Informatics

Sofia University

Sofia, Bulgaria

msredkov@fmi.uni-sofia.bg

Abstract in English—Despite its popularity as a data interchange

format, JSON still lacks a commonly accepted data model and is

defined only syntactically. Because of its simplicity, it may appear

that the textual representation already conveys all the needed

meaning; however, in the context of global Internet-centric

applications, where many different technologies interact, the lack
of defined semantics can lead to serious interoperability issues.

In this paper we explicitly attack this problem: we look at the

most common JSON interpretations and examine the potential

ambiguities of JSON, and then we introduce Jsonya/dm – a

strictly defined, language-neutral data model for JSON, which

allows consistent interpretation of JSON regardless of the specific

environment. To evaluate it, we examine 63 existing JSON

libraries for 10 programming languages; the analysis confirms

that Jsonya/dm both reflects the established conventions and
addresses the potential incompatibilities between these libraries.

Keywords—JSON, information model, data model,

interoperability

Abstract in Russian—Несмотря на свою популярность, формат

обмена данных JSON до сих пор не имеет общепринятой

модели данных и дефинируется только синтаксически. Из-за

его простоты может показаться, что текстовое

представление уже передает все необходимые значения.

Однако, в контексте глобальных интернет-ориентированных

приложений, где множество разных технологий

взаимодействуют между собой, отсутствие определенной

семантики может привести к серьезным проблемам
совместимости.

В этой статье мы прямо атакуем эту проблему: мы

рассматриваем самые популярные интерпретации JSON,

исследуем его потенциальные двусмысленности, а затем

вводим Jsonya/dm - строго дефинированную, языково-

нейтральную модель данных для JSON, предлагающую

одинаковую интерпретацию независимо от конкретной

среды. Для оценки модели мы рассматриваем 63

существующих JSON библиотек для 10 языков

программирования. Анализ подтверждает, что Jsonya/dm

одновременно отражает установленные конвенции и

исправляет потенциальные несовместимости между этими
библиотеками.

Keywords—JSON, информационная модель, модель

данных, совместимость

I. INTRODUCTION

The JavaScript Object Notation (JSON) [1] celebrates a
significant growth in popularity and is often applied for the
integration of the technologies used in global Internet-centric
applications. Because JSON is defined only syntactically,
ensuring that all parties interpret it the same way is
responsibility of the engineers; for large systems with fuzzy
boundaries this can become a real challenge.

What makes it even harder is that most developers
implicitly assume “semantics” biased towards the concrete
tools they use and fail to observe that others may process JSON
differently. Such interpretation clashes may cause
interoperability issues when later the system expands. Most
approaches to tackle this issue are built around either a specific
environment or another data-interchange format; although they
suit the particular purpose, none of them defines strict,
language-neutral meaning without introducing significant
complexity.

In particular, they fail to extend some of the fundamental
properties of JSON, namely to be “the intersection of all
modern programming languages” and “the thing that
everybody can agree on, so it's really easy to pass data back
and forth” [2]. This is not a surprise—programming languages
and run-time environments are very different, so deriving a
data model from one of them is likely to discriminate some of
the others. This led us to the following idea: if we want an
interpretation which extends the above two principles, then we
need to derive it from the specifics of a large enough set of
environments. This is what we do in this paper.

To define such a model we started from the syntax of JSON
and identified the elements which are prone to multiple
interpretations. For each possible meaning we analysed the
impact it would have on the different environments, and
incorporated the most interoperable ones into the unambiguous
data model Jsonya/dm. Most challenging were the
interpretation of numbers and the order of object members, but
we hope to have achieved acceptable solutions for them. To
evaluate our data model we analysed 63 JSON parsing libraries
for 10 programming languages and compared the data models
they use to ours.

We determined that Jsonya/dm agrees with the design
decisions for which the majority of libraries were in unison and
provides a reasonable unification otherwise. If applied,
Jsonya/dm can bring consistent JSON interpretation to a wide
variety of programming languages. As a drawback, if

This work was partially supported by the Bulgarian National Science

Research Fund through contract 02-102/2009.

interoperability is less important, some environments may
achieve better performance or convenience with a data model
suited towards their specific needs.

This paper attempts to resolve the data model ambiguities
of JSON while its toolset is still rapidly evolving. Its main
contributions are the following:

 an overview of some of the currently used JSON data
models (Section II);

 analysis of the ambiguous features of JSON and the
general properties of a data model resolving them
(Section III);

 the unambiguous JSON data model Jsonya/dm
(Section IV);

 assessment of how the data model aligns to current
trends based on the analysis of 63 JSON libraries for
10 programming languages (Section V).

II. EXISTING APPROACHES

Although to this point no standard JSON data model 1
exists, the lack of such has not prevented numerous successful
JSON applications. In this section, we describe some of the
data models frequently implied by software engineers.

A. JavaScript Interpretation

The origin of JSON have led many people to assume that it
should be interpreted the same way as a JavaScript interpreter
would do; thus using the data model of JavaScript as a data
model of JSON is very common. This raises the question: if
JSON is a subset of the ECMAScript Standard [3], should the
same be implied for its interpretation?

One of the properties of this data model is that JSON
numbers should be interpreted as IEEE 754 [4] 64-bit floating-
point values. Examples of this assumption can easily be found
around the Internet 2 3 4 . This seems natural for JavaScript-
intensive applications, and may also work well for other
languages.

Such numeric interpretation, however, can complicate some
applications: JSON processing in environments without IEEE-
754 floats would be difficult, but a bigger concern is that “since
floating point values are converted to and from ASCII
representations, we could lose some least significant digits
during the translation” [5]. Also, the precision guaranties may
be inappropriate for certain applications [6], [7], and even if
IEEE-754 floats are appropriate, this data model may still be

unsuitable because JSON lacks +Inf and NaN values.

Treating JSON objects as JavaScript ones also brings an
issue. Although the ECMAScript Standard states that “The
mechanics and order of enumerating the properties ... is not

1
 In this paper we use the terms data model, information model, and

metamodel as “the constraints on the information entities used to model

real world information”.
2
 http://deron.meranda.us/python/comparing_json_modules/

3
 http://blog.mozilla.com/dherman/2011/05/25/a-semantics-for-json/

4
 http://lethargy.org/~jesus/writes/why-json-sucks

specified” [3:92], the JavaScript interpreters of many web-
browsers enumerate object members in the order of their
assignment. Developers unaware that this behaviour is
implementation-specific can depend on it and prevent
interoperating software from using JSON objects as “unordered
collection of zero or more name/value pairs” [1:1]. For
environments without an efficient ordered name/value
collection like LinkedHashMap5 this may be problematic.

B. Metamodel of Another Data-Interchange Format

JSON is relatively young and its toolset is still developing,
so it may be natural to consider it as a simplification of another
data format, and to imply the same for its data model. As XML
is still ubiquitous, it is often assumed that JSON should be
somewhat compatible to it. For example, Wilde and Glushko
identify JSON as “an alternative physical model for XML
metamodels” [8:48], tools converting between XML and
JSON [9], as well as methods to use XML technologies with
JSON, including XSLT [10], XQuery [11], [12], and
XForms [13], [14] are available.

Employing the information model of XML, however, is not
trivial. First, identified by Wilde and Glusko as the “Tree
trauma” [15] is the presence of multiple standard metamodels
for it. Secondly, due the substantial differences between the
two formats, there is no standard way to convert between
JSON and XML. Finally, the complexity of XML may prevent
JSON from being used as “The Fat-Free Alternative to XML”6.

YAML, less popular than both XML and JSON7 but still
widely recognised, is another possible alternative. It is stated as
a “natural superset of JSON” [16], so many YAML
technologies can be applied to JSON too. In addition, its
specification explicitly defines the information model of what
is available after parsing.

However, YAML is less adopted than XML, so the number
of technologies that could be benefited from is limited. It
shares some design characteristics with JSON, but is still
significantly more complex; with its metamodel the simplicity
of JSON would not be taken advantage of. Finally, its
metamodel is still loosely defined, e.g.: “The supported range
and accuracy depends on the implementation, though 32 bit
IEEE floats should be safe.” [16:74], which means that
additional negotiations between software engineers may still be
necessary.

C. Other

1) Syntax Level Only
Another approach is to accept JSON only as syntax, so each

developer can pick the most suitable data model for their needs.
For example, if an application needs to model sequences of
command/argument instructions, its developers may choose to
interpret objects as ordered multi-maps in order to represent the
instructions more conveniently. This is legal because “names

5
 http://docs.oracle.com/javase/7/docs/api/java/util/LinkedHashMap.html

6
 http://www.json.org/fatfree.html

7
 at least in search volume:

http://www.google.com/trends/?q=XML,+JSON,+YAML

http://deron.meranda.us/python/comparing_json_modules/
http://blog.mozilla.com/dherman/2011/05/25/a-semantics-for-json/
http://lethargy.org/~jesus/writes/why-json-sucks
http://docs.oracle.com/javase/7/docs/api/java/util/LinkedHashMap.html
http://www.json.org/fatfree.html
http://www.google.com/trends/?q=XML,+JSON,+YAML

within an object SHOULD be unique” [1:3], i.e. this is not
mandatory.

In fact, working above the syntax level may sometimes not
be even needed, e.g. for certain stream processing tasks. The
main drawbacks of this approach, however, are that in large
systems format specifics like the above one must be explicitly
managed in order to ensure that all software components can
handle them.

2) Host Language Types
Most programming languages have constructs similar to the

JSON ones, so many parsers just use the closest possible native
data type. This simplifies processing and allows convenient
and efficient manipulation.

However, different languages have differences in the
corresponding data types, so whether a value is encoded as a
string or a number may be irrelevant for PHP and Perl, but is
essential for C++ and Java. Other incompatibilities may arise
from the meanings of null and false, associative arrays, etc.
Since there are often multiple suitable data types for the same
JSON value, incompatibilities may occur even between
programs written in the same language.

3) Custom Object Model
Finally, a common way to define a metamodel is via an

object model defined as a set of custom data types. Many
libraries employ this approach; it gives explicit control over the
available information and allows easy specification of the
information model via the documentation of these types.

In general, this approach does not conflict with ours, and
can be used with libraries conforming to Jsonya/dm. Without
an explicit language-neutral definition, however, the data
model is often influenced by the capabilities of the host
language and may be unsuitable for other environments.

III. ANALYSIS

To some readers, JSON may seem sufficiently intuitive and
unambiguous. For example, the following JSON code uses all
types of values and yet its interpretation seems rather obvious:

{

 "name": "Evgeni V. Plushenko",

 "birth_date": {

 "year": 1982,

 "month": 11,

 "day": 3

 },

 "best_scores": [

 261.23,

 91.30,

 176.52

],

 "status": {

 "verified": true,

 "locked": false,

 "external_record": null

 }

}

Even for this trivial definition, however, some questions
can be asked: Would the record be same if we had written

91.3 instead of 91.30? Could the external_record field
have been omitted?

For simple web applications the answers to such questions
may be irrelevant. This demonstrates one important issue: the
ambiguities of JSON are often neglected, because they are not
apparent in basic use cases. In this section we will examine the
aspects of JSON that may cause inconsistent interpretation with
respect to the following styles of representing parsing results:

 Mutable data-structures, from which the information is
efficiently accessed and manipulated. Predominant in
imperative languages, usually based on object
properties, associative arrays, or specifically designed
data types.

 Immutable, and usually purely functional data
structures, from which the information can be
accessed, and modified versions of it can be efficiently
created. Most common in functional languages, but
also used in imperative languages for better
concurrency or structural sharing.

 Constant in-memory representation, from which the
information can be efficiently accessed, but no
modification mechanism is provided.

In addition, several other aspects must be considered for the
data model, including the availability of libraries and system
resources, the data model of the environment itself, and
whether the information is stored on-disk or in memory.

Although we want to provide a solution appropriate for a
wide enough variety of technologies, we cannot consider every
possible environment and programming language. For
example, paradigms such as logic programming or
concatenative programming languages will not be taken into
account.

A. Objects

The ambiguities of the interpretation of objects, as well as
of other elements, are caused by two main uncertainties: which
aspects of the JSON representation are essential and which are
not, and what values are allowed and what are invalid.

1) Order of Fields
One of the most important ambiguities is whether the order

of object members, which we will call fields, is essential or not.
For example, do the two object items in the following example
represent identical information?

[

 {"a": 1, "b": 2},

 {"b": 2, "a": 1}

]

Although RFC 4627 states that objects are unordered, bug
reports against libraries not preserving the order can easily be
found 8 9 10 . In fact, considering the order of fields essential

8
 https://github.com/flori/json/issues/66

9
 https://github.com/akheron/jansson/issues/15

10
 http://code.google.com/p/json-simple/issues/detail?id=51

https://github.com/flori/json/issues/66
https://github.com/akheron/jansson/issues/15
http://code.google.com/p/json-simple/issues/detail?id=51

allows some problem domains to be conveniently modelled and
is useful if JSON files are both human- and machine-processed.

The second reason why unorderness is neglected comes
from the possible representations of associative arrays. We
identified four most common representations:

 Plain lists or arrays of pairs are used in environments
where implementation of more sophisticated data
structures is unfeasible. Searching a value by name is
an O(N) operation, but field order is preserved and can
be manipulated.

 Sorted sequences provide O(log N) access without
complicated data structures and are suitable for simple
mutable or constant object representation. With
structures such as balanced binary trees (or B-Trees for
on-disk storage) can also provide O(log N)
modification in both mutable and immutable setting.

 Hash tables are the standard structure in many
languages including Java, Python, Perl, and Ruby (up
to 1.8.x). They provide O(1) access and manipulation
in mutable object representation, but do not define any
useful traversal order. They are not suitable for
immutable representations, because the O(1)
performance cannot be achieved.

 Linked hash tables are hash tables enhanced with
additional pointers to maintain the order of elements in
a linked-list-like manner. This complication can
slightly impact resource usage, but the O(1)
performance is still retained. PHP and Ruby 1.9 use
them for their associative array constructs, and library
implementations are available for most popular
programming languages. Like regular hash tables, they
are not suitable for immutable setting.

As visible, half of the approaches naturally preserve the
order of the fields, and the other half do not. Whether hash
tables or linked hash tables should be used is often disputed.
Ruby is an example of a language which moved from
unordered to ordered hash maps in its version 1.9.1 release11. A
change in the opposite direction can be seen in Perl 5.8.1, in
which ‘Mainly due to security reasons, the “random ordering”
of hashes has been made even more random’1213.

Specifying lack of order guarantees, however, may not be
sufficient to prevent developers from inadvertently relying on
internal details. Other than the JavaScript example we already
mentioned, the documentation of the Dictionary generic
class from .NET states that “The order in which the items are
returned is undefined”14, yet, developers have noticed that the
CLR implementation uses the insertion order as an order for
traversal 15 16 . Not only is this assumption implementation

11

 http://svn.ruby-lang.org/repos/ruby/tags/v1_9_1_0/NEWS
12

 http://cpansearch.perl.org/src/JHI/perl-5.8.1/pod/perldelta.pod
13

 Pointed out by Marcus Ramberg: http://mjtsai.com/blog/2009/

02/05/ordered-hashes-in-ruby-19/#comment-472940
14

 http://msdn.microsoft.com/en-us/library/xfhwa508.aspx
15

 http://stackoverflow.com/q/154307/390389
16

 http://forums.asp.net/t/1267419.aspx/1

dependent, but it also does not hold if some elements were
removed before new ones were inserted.

Even if the order of enumeration looks random, leaving it
underspecified breaks the (mostly incorrect) assumption that
the application of the same algorithm to the same data produces
the same result. In contrast, the other three representations
(plan lists, sorted sequences and linked hash tables) do not have
such an issue—no matter whether they preserve the order or
not, the same program using them would work the same way
regardless of the data structure implementation details.

It turns out, that there is no best option: the plain list and
linked hash map implementations break the unorderness of the
JSON objects, plain hash-maps may lead to inconsistent
behaviour, and sorted sequences require O(log N) access time.
In immutable setting, however, sorted sequences have a clear
advantage over the rest.

2) Field Uniqueness
The fact that in JSON objects the names are recommended

but not required to be unique raises some important questions.
For example, do the items of the following array define
equivalent objects?

[

 {"x": 1, "y": 2},

 {"x": 1, "y": 2, "x": 1},

 {"x": 0, "y": 2, "x": 1},

 {"x": 1, "x": 1, "y": 2}

]

Depending on the parser and the used data structures, at
least 5 different equivalence configurations are possible,
ranging from all distinct to all equal. To avoid these
complications, and because many JSON tools cannot handle
repeated field names, we will simply consider such JSON files
invalid.

Even if all fields have unique names, two other questions
arise: are there any restrictions on the names of the fields, and
how should they be compared?

As the RFC states merely that the name from the
name/value pair is a string, we may assume that no further
restrictions are imposed. This means that empty strings and
names containing spaces or non-Latin characters can be used as
field names. This may break certain attempts to map them to
host-language identifiers, or at least require that a fallback
mechanism to access fields by strings is provided, but we could
not identify any reasonable alternative.

To answer how names should be compared, e.g. whether

"J" is the same as "\u004a" we will analyse the ambiguities
of strings in Section III-C. Besides that, one particular issue is
whether field names are case-sensitive or not. With risk of
discriminating some environments, and because case-
sensitivity of Unicode characters is far from trivial, we will
assume the more popular convention, i.e. that field names are
case sensitive.

http://svn.ruby-lang.org/repos/ruby/tags/v1_9_1_0/NEWS
http://cpansearch.perl.org/src/JHI/perl-5.8.1/pod/perldelta.pod
http://mjtsai.com/blog/2009/%2002/05/ordered-hashes-in-ruby-19/#comment-472940
http://mjtsai.com/blog/2009/%2002/05/ordered-hashes-in-ruby-19/#comment-472940
http://msdn.microsoft.com/en-us/library/xfhwa508.aspx
http://stackoverflow.com/q/154307/390389
http://forums.asp.net/t/1267419.aspx/1

B. Numbers

As already stated in Section II-A, the lack of number
specification beyond the syntax layer is an issue affecting
certain applications, and a potential source of interoperability
problems. Although JSON numbers have an integral part and
optionally a fractional part and an exponent, certain details are
not clear:

 Are negative and positive zeros (-0 and 0) different?

 Is there, like in the C-like languages a difference
between integers and floating point numbers, e.g. are
130 and 130.0 different?

 Are the number of trailing zeroes and the value of the

exponent essential, e.g. do 130, 130.0, 130.00 and
13e1 encode distinct values?

 Is there a particular precision of the numbers, e.g. can
we accurately define 0.123456789012345678901?

 Is there a limit on the range of the numbers, or can they
be arbitrarily large?

These questions are most often answered depending on the
available host language types. For example, the C library
Jansson parses numbers into either double or long / long

long depending on whether their textual representation
contains a dot or an exponential part17. In Java, depending on
the passed options, Jackson 18 , can parse values into
BigDecimal objects, which provide arbitrary precision and
retain trailing zeroes, thus 130.0 and 130.00 would be
different.

The principle to be the intersection of the popular
environments is hardly applicable here. First, if we really want
to address the majority of languages, we must probably limit
ourselves to 32-bit integers—a range insufficient for many
applications. Secondly, if a limit is imposed, the numbers
beyond it would have to be encoded as JSON strings, which
would not be a very elegant solution.

Another approach would be to state that there are no
restrictions, but implementations with limited capabilities may
fail to process certain values. In fact, this is inevitably true for
other types: some environments may fail to parse non-Latin
characters, and most will fail to load strings longer than 232
characters, yet it would be unreasonable to solve these
problems by restrictions. Not stating limits, however, is not
sufficient; applications still need precision guarantees, so that
numbers are not unexpectedly truncated by relaying software
components.

C. Strings

Although relatively intuitive, strings may still be prone to
misinterpretations:

 Does escaping matter, e.g. are "K" and "\u004b"
parsed as different values?

17

 http://www.digip.org/jansson/doc/2.3/conformance.html#real-vs-

integer
18

 http://jackson.codehaus.org/

 Can we use invalid Unicode, e.g. standalone surrogate
characters, code points larger than 0x10FFFF, or
illegal UTF-8 byte sequences?

 Does the fact that characters outside the Basic
Multilingual Plane are escaped with two surrogate
pairs imply that UTF-16 should be used?

 Are there any additional limits due to interoperability
considerations, such as strings to not contain nil
(\u0000), or more than 231-1 characters?

Luckily, most of these can be easily dealt with. Related to
the last question, Bryan addressed an interesting issue in the
JSON Group19 by pointing out that the RFC implies a limit of
996 octets for JSON strings, due to the stated 8-bit
compatibility (as defined in RFC 2045 [17]). Fortunately, this
restriction was not intended, and even if it were, it would only
affect the UTF-8 encoding.

D. Other Ambiguities

Another source of ambiguities may be the interpretation of
empty or null-like values. All of the following array items
represent some kind of empty value:

[false, null, 0, "", {}, []]

In certain environments, some of these are traditionally
indistinguishable; for example C uses 0 for a false value, in
Lisp empty lists are represented as a NIL, in PHP empty
regular (indexed) and associative arrays are the same value, etc.

Because some programming languages provide type
coercion between numbers and strings, it is natural to also ask
whether the same value written as JSON number and JSON

string would yield the same result, e.g. 123 and "123".

Finally, the formatting of JSON files (e.g. which values are
grouped into a single line) is usually lost after a round-trip
encoding. This may not be desirable when the file is edited
manually, so it may be appropriate to retain some formatting
details in the resulting object representation. The same may be
even more valuable if non-standard extensions such as
comments are used.

E. Design Considerations

Our goal of resolving the listed ambiguities is further
refined by the following four main design ideas:

 Explicitness. To avoid incompatibilities caused by
conflicting assumptions, the metamodel should
explicitly and unambiguously define which JSON
details are essential and which are not.

 Determinism. To achieve reliability, the same JSON
text should denote the exact same information
regardless of the concrete environment, and any loss of
information, including numeric precision, must be
controllable.

 Detail concealment. To avoid potential
incompatibilities, the metamodel structure should not

19

 http://tech.groups.yahoo.com/group/json/message/1795

http://www.digip.org/jansson/doc/2.3/conformance.html#real-vs-integer
http://www.digip.org/jansson/doc/2.3/conformance.html#real-vs-integer
http://jackson.codehaus.org/
http://tech.groups.yahoo.com/group/json/message/1795

expose any information not strictly defined as
essential.

 Minimalism. Following the core JSON principles, only
information which is useful to a wide enough set of
applications should be included.

For some specific uses these restrictions can be too costly.
If less strict semantics are more appropriate (e.g. due to
performance reasons), such should be achieved outside the
bounds of our metamodel.

IV. JSONYA/DM

Following these ideas we designed Jsonya/dm—an
unambiguous information model aiming to provide stable
common assumptions between parties communicating with
JSON. In this section we define it and describe some of its
properties.

A. The Metamodel

The fundamental building block of Jsonya is the
information entity called jsonya element, or simply element,
which represents the essential information of a JSON fragment,
excluding certain details such as spacing and order of object
members. Each element can be distinguished as one of the 7
kinds: string, decimal, object, array, true, false, or null. They
correspond to the 7 types of values from http://json.org/: string,
number, object, array, true, false, null.

String elements represent Unicode strings, i.e. finite
sequences of zero or more Unicode code-points (all valid

1112064 code-points from U+0000 to U+D7FF and from
U+E000 to U+10FFFF) [18]. String elements do not describe
how strings were encoded to bytes or how characters were
escaped.

Decimal elements represent the exact values of finite
decimal numbers (rational numbers with denominator in the
form of 2N 5M) and nothing more. They correspond bijectively
to the set of finite decimal numbers, so they cannot contain
special values such as 1/3 or positive infinity. The JSON texts

‘0’, ‘-0’, ‘0.0’ and ‘0e1’ all correspond to the same decimal
element.

Object elements are associative arrays whose keys are
distinct strings and whose values are elements. The key-value
pairs are referred to as fields, and we say that each object
element contains its values. Objects are unordered, so any
observable enumeration order should depend only on their keys
and values.

Array elements represent finite sequences of zero or more
elements, which have a non-negative integer size, and for each
integer i in [0, size - 1] an element denoted as its i-th item. Each
array element contains its items.

True, false, and null elements represent the true, false

and null values respectively. Their only observable
information is their kind.

All elements are finitely nested, i.e. the contains relation
forms a finite rooted tree of elements. There is no other
observable information.

B. Domain Enumerability

Although the above explanation clearly describes the
information model, a more formal definition may also be
valuable. We considered several possible meta-metamodels to
define Jsonya/dm, but none of them seemed suitable for such a
bottom-level data model. For this reason will simply define the
set of all distinct elements by assigning a unique non-negative
integer to each of them.

Figure 1. Bijective function computing elements from indices. Here ++

denotes string and array concatenation and object union.

Figure 1 shows the function element(n), which, from given
index computes its corresponding element. For example

element(1000000) returns ["D", [null], false, true].

http://json.org/

The function is bijective, i.e. it defines a one-to-one
correspondence between the non-negative integers and the set
of all Jsonya/dm elements. Its inverse function, which we will
not include here, also has a similar structure.

The mapping is based on the Cantor pairing function [19],
slightly modified to work with non-negative integers instead of
with positive ones:

The x(n) and y(n) from Figure 1 are its inverse functions.

Most elements are encoded in head/tail manner with the
pairing function. Non-zero decimal elements are decomposed
to the form of M 10E, where M is a positive integer non-
divisible by 10 (without trailing zeroes), and E is an integer.
The object fields are sorted by the index of their names—each
consecutive name is encoded as the difference to the index of
the previous field name. This disallows field name repetition
and provides unique (canonical) encoding of objects.

Although the presented encoding scheme can be used for
other purposes like the generation of testing values, it was
designed merely to define the set of distinct Jsonya elements.
For practical use it may be modified, e.g. to return human-
readable strings more often.

C. Properties

The metamodel follows the identified design principles.
Strings can contain all valid Unicode code points, because the
intersection principle could not be applied to them—the set of
characters consistently usable in the majority of environments
would be too restrictive (e.g. code points 1 to 127).

The most radical design decision in Jsonya/dm is the way
numbers are modelled. As the intersection principle could not
be applied here too, decimals were chosen because of their
importance for various applications [20], and because they can
be encoded to and decoded from text without any loss of
information. Their name differs from the name of the
corresponding JSON values to convey the narrowed meaning.
As an unintended consequence, all the 7 kinds of elements start
with distinct letters, which may in some cases be useful.

Object values are usually used to store struct-like records
with fixed set of fields, dictionary-like mappings with
homogeneous values, or sometimes hybrids of the two. The
information in jsonya objects is completely sufficient for these
purposes. The intersection principle was applied to rule out the
field order from the essential information. The range of
possible field names however was not limited, and all distinct
jsonya strings are acceptable and different, because the
commonly usable subset would be too restrictive (e.g. only the

characters [a-z_]).

Arrays are most often used as lists of homogeneous items,
as fixed size tuples, or as hybrids of both. Jsonya/dm reflects
their widely accepted meaning and steps further to always
allow arrays to be distinguished from other kinds of elements.
In fact, empty arrays, empty objects, empty strings, false and
null are explicitly defined as distinct values. Also strings
containing decimal digits are distinct from decimals, and

objects containing index-like keys, e.g. {"0": "a", "1":

"b"}, are distinct from arrays with the same values, e.g.

["a", "b"].

We consider the mapping between JSON and Jsonya/dm
straightforward, and therefore omit it from this paper. The
defined set of values can be used for other representation
formats of JSON-based values, e.g. binary representations, or
representations decomposed for more efficient searching.

D. Impact on Implementations

Because for some environments, this metamodel may be
too sophisticated, we do not state that all conforming parties
must fully implement it. Instead, the particular limitations can
be negotiated explicitly, and appropriate measures to not distort
relayed information must be taken if necessary.

The elements most likely to be problematic for certain
environments are the decimals. To avoid overhead, explicit
limits (e.g. up to 15 decimal digits) can be negotiated, or
parties that do not perform arithmetic operations but merely
relay values can use some text-based in-memory
representation.

It turns out, that all essential information, i.e. all
information observable from jsonya elements is the following:

 the kind of each element (object, array, decimal,
string, true, false or null);

 for object elements: the set of the names (keys) of its
member fields;

 for object elements: from given string, the value of the
field with that name;

 for array elements: their size, i.e. the number of items
they contain;

 for array elements: from given index, the element at
that index;

 for decimal elements: the number they represent;

 for string elements, the Unicode text they represent.

Because of this, implementing a Jsonya/dm conformant
object model can be very simple. The following example
represents one possible interface for in-memory Java
representation:

public interface Element {

 String kind();

 Set<String> keys();

 Element field(String name);

 Element item(int index);

 int size();

 String asString();

 BigDecimal asDecimal();

}

E. Limitations

The last example also shows that Jsonya/dm does not
prescribe exactly how an object model can be designed. This is

done purposely in order to keep its definition small and simple.
For example, the following questions are not answered:

 How is the unorderness of the keys() property going
to be achieved? Should it be via a sorted or hashed
implementation?

 What will happen if a non-existing field or item is
requested, or a method non-applicable for the element
kind is invoked?

 Java's BigDecimal distinguishes equal numbers with
different scale, e.g. 12.0 from 12.00. How will this
additional information be concealed?

Jsonya/dm also does not define how the “inessential”
information can be handled in the cases when such is needed.
How the order of fields or the particular formatting can be
associated with the elements without polluting the object model
is left to the tool engineers.

Finally, although the ecosystem of JSON is still maturing,
many tools have already reached a relatively stable state. The
introduction of a metamodel at this stage is threatened by
potential incompatibilities with established technologies,
especially ones that intensively rely on the information
model such as JSON Schema [21], JSONPath 20 , or JSON
Pointer [22].

V. EVALUATION

To assess how the proposed data model aligns with current
trends, we analysed a number of JSON libraries, identified the
data models they use, summarised their properties and
compared them to Jsonya/dm.

A. Methodology

From August to September 2011 we performed the
following:

 We selected the 10 most discussed 21 programming
languages according to LangPop.com22, and for each
of these languages selected all libraries listed in its
corresponding section in http://json.org/.

 We identified the data model of each library by
analysing its source code and documentation, and
writing experimental programs in order to obtain the
following information:

o How was the JSON information provided,
e.g. object model or events?

o Was the string representation (e.g. character
escaping) exposed?

o What was the supported range of characters?

20

 http://goessner.net/articles/JsonPath/
21

 The most discussed languages instead of the most popular were

selected because they covered more paradigms and were likely to gain

more popularity in future.
22

 http://langpop.com/#normalizeddiscussion

o Was the textual representation of numbers
(i.e. the exact way they were written in)
exposed?

o Were integers and non-integers treated
differently and what was the supported range
and precision for integral or non-integral
numbers?

o Was the order of object fields exposed, and
what data structure was used to represent
objects?

o Were false, null, empty objects and
empty arrays distinguishable?

o How was the JSON information modelled,
e.g. standard types or custom object model,
mutable or immutable types?

 We sent preliminary data of the analysis to the JSON
group23, and made a small number of corrections based
on the received feedback.

 We summarised the results and used them to assess the
properties of Jsonya/dm in order to identify whether
the already established tendencies were captured and
whether the areas where libraries are too different were
addressed.

B. Results

The listed libraries were 72 (C++: 8, C: 11, Java: 21,
Python: 4, Haskell: 2, JavaScript: 2, Ruby: 3, C#: 12, PHP: 6,
Lisp: 3), of which 9 (C++: 2, C: 2, Java: 3, C#: 2) were
excluded for various reasons. Here is the summary of the
collected information24 for the remaining 63 libraries:

 JSON information:

o custom object model: 31,

o object model of standard types: 22 + 3*,

o mixed standard/custom types: 3,

o call-backs or tokens: 3.

 String representation (escapes):

o hiden: 56 + 1*,

o exposed: 6.

 Character set:

o Unicode: 37 + 15*,

o Unicode without nil: 2,

o more limited: 7.

 Integer or fractional discrimination:

o based on the presence of [.Ee] character:
37 + 4*,

23

 http://tech.groups.yahoo.com/group/json/message/1751
24

 ‘*’ denotes “usually yes, but with some exceptions”

http://json.org/
http://goessner.net/articles/JsonPath/
http://langpop.com/#normalizeddiscussion
http://tech.groups.yahoo.com/group/json/message/1751

o no discrimination: 19,

o based on the value of the number: 3.

 Textual representation of numbers:

o hidden: 43,

o partly exposed (e.g. only in certain cases or
trailing zeroes only): 13,

o exposed: 7.

 Non-integer range and precision:

o IEEE 754 64-bit float: 33 + 9*,

o IEEE 754 32-bit float: 3,

o manual (textual representation): 7,

o unlimited decimal: 5 + 5*,

o unlimited rational: 1.

 Integer range:

o unlimited: 15 + 2*,

o int64: 10 + 6*,

o same as fractional: 11,

o int32/int6425 depending on the platform: 6,

o int30/int62 depending on the platform: 1,

o int32: 2 + 1*,

o int64 ∪ uint64: 2,

o manual (textual): 7.

 Field order:

o exposed: 29 + 7* (22: linear structures, 7:
linked hash table, 7: platform dependent
structures),

o hidden: 20 + 2* (16: hash tables, 6 sorted
structures),

o partly exposed or depending on the
environment: 5.

 Null-like values:

o all distinguished: 51 + 6*,

o issues to handle or distinguish null, false,
empty arrays or empty objects: 6.

 Mutability:

o mutable: 53,

o immutable: 4 + 3*,

o call-backs or tokens: 3.

25

 intN and uintN denote N-bit signed and unsigned integers.

C. Interpretation

The analyses of these libraries in the context of the
properties of Jsonya/dm outline the following:

 The discrepancy in number handling justified the
seemingly radical approach taken by Jsonya/dm.
Unfortunately, most libraries could not handle
arbitrarily large numbers, and handling limited decimal
numbers accurately requires additional effort.

 Jsonya/dm treats strings in agreement with the majority
of libraries. Although some environments did not fully
support Unicode, no suitable smaller character set
could be identified.

 The fact that more than half of the libraries preserved
and exposed the field ordering is worrying, as many
developers may have considered this information
essential. Still if interoperability is desired, the
approach of Jsonya/dm is more appropriate.

 The proposed treatment of special values and field
names would cause issues only in small number of
libraries.

 As a drawback to our data model, the majority of
libraries used mutable object models or object models
based on standard system types, but Jsonya/dm does
not address how such can be efficiently designed.

D. Threats to Validity

The following may have affected the accuracy of the
performed evaluation:

 All libraries were considered equal, although they vary
significantly in features, quality and popularity.
Therefore, certain libraries may have a much wider
influence than others, which was not considered in our
survey.

 Some of the libraries may have not been analysed
correctly, e.g. used in an incorrect way. We believe the
percentage of such errors should be small.

 As several months have passed between the analysis,
and the completion of this paper, some of the libraries
may have changed the data model they use.

VI. CONCLUSION

We presented Jsonya/dm—an unambiguous data model for
JSON. We analysed some widely used alternatives and
outlined some of their deficiencies. We identified the common
ambiguities of JSON and discussed how they can be resolved.
We presented the data model and defined the set of its elements
via a bijection with the set of non-negative integers. We
discussed its properties and limitations, showing that if
modifications are not considered, the interfaces of the adhering
object models can be simple. We summarised the properties of
the 63 JSON libraries analysed during the evaluation, showing
that Jsonya/dm is aligned with established tendencies and
attacks the common causes of discrepancy.

While we have already built experimental object models,
assessing how easily Jsonya/dm can be implemented in various
environments remains a task for the future. Specifically, its
impact on performance, code size and ease of use needs to be
assessed and appropriate data structures and design guidelines
need to be suggested. Although mapping JSON code to
Jsonya/dm elements is straightforward, a formally defined
parser can also be a valuable addition.

We believe that the JSON ecosystem would greatly benefit
from an explicitly defined information model like the presented
one. It is our hope that Jsonya/dm will be accepted by the
JSON community, and we look forward to integration with
some of the already developed JSON tools.

REFERENCES

[1] D. Crockford, “The application/json Media Type for JavaScript Object
Notation (JSON),” RFC 4627 (Informational), 2006

[2] D. Crockford, “The JSON saga,” YUI Theater video, 2009,

[3] ECMA, ECMA-262: ECMAScript Language Specification. 5.1 edn.,
2011

[4] IEEE Task P754, IEEE 754-2008, Standard for Floating-Point

Arithmetic, 2008

[5] R. Neswold and C. King, “Generation of simple, type-safe messages for
inter-task communications,” in Proceedings of the 12th International

Conference on Accelerator and Large Experimental Physics Control
Systems, Kobe, Japan , 2009, pp. 137–139

[6] G. Polhill, L. Izquierdo and N. Gotts, “The ghost in the model (and other

effects of floating point arithmetic),” Journal of Artificial Societies and
Social Simulation 8(1), 2004

[7] D. Monniaux, “The pitfalls of verifying floating-point computations,”

ACM Trans. Program. Lang. Syst. 30 (2008) 12:1–12:41

[8] E. Wilde and R.J. Glushko, “Document design matters,” Commun.
ACM 51 (2008) 43–49

[9] D.A. Lee, “JXON: an architecture for schema and annotation driven

JSON/XML bidirectional transformations,” in Proceedings of Balisage:
The Markup Conference 2011, Montréal, Canada, August 2011

[10] M. Joseph, “XSLT and XPath for JSON — Project 6 Research,”
https://www.p6r.com/articles/2008/05/06/xslt-and-xpath-for-json/, 2008

[11] R. Bamford, V. Borkar, M. Brantner, P.M. Fischer, D. Florescu, D. Graf,

D. Kossmann, T. Kraska, D. Muresan, S. Nasoi and M. Zacharioudakis,
“XQuery reloaded,” in Proc. VLDB Endow. 2(2), 2009, pp. 1342–1353

[12] J. Robie, M. Brantner, D. Florescu, G. Fourny and T. Westmann,

“JSONiq, XQuery for JSON, JSON for XQuery,” in XML Prague 2012
– Conference Proceedings, Prague, Czech Republic, 2012, pp. 63–72

[13] A. Couthures, “JSON for XForms, adding JSON support in XForms data

instances,” in XML Prague 2011 – Conference Proceedings, 2011, pp.
13–24

[14] S. Pemberto: “Treating JSON as a subset of XML,” in XML Prague

2012 – Conference Proceedings, Prague, Czech Republic, 2012, pp 81–
90

[15] E. Wilde and R.J. Glushko, “XML fever.”, Queue 6(6), 2008, pp. 46–53

[16] O. Ben-Kiki, C. Evans and I. döt Net, YAML ain’t markup language
(YAML™) version 1.2, 3rd edition, patched at 2009-10-01.

http://yaml.org/spec/1.2/spec.pdf, 2009

[17] N. Freed and N. Borenstein, “Multipurpose Internet Mail Extensions
(MIME) Part One: Format of Internet Message Bodies,” RFC 2045

(Draft Standard), 1996

[18] The Unicode Consortium, “Chapter 3 Conformance” in The Unicode
Standard, Version 6.1.0, Mountain View, CA, 2012,

http://www.unicode.org/versions/Unicode6.1.0/

[19] G. Cantor, “Ein Beitrag zur Mannigfaltigkeitslehre,” Journal für die
reine und angewandte Mathematik 84, 1878, pp. 242–258

[20] M.F. Cowlishaw, “Decimal floating-point: Algorism for computers,” in

Proceedings of the 16th IEEE Symposium on Computer Arithmetic
(ARITH-16’03). ARITH’03, Washington, DC, USA, IEEE Computer

Society, 2003, pp 104–111

[21] K. Zyp and G. Court, “A JSON media type for describing the structure
and meaning of JSON documents,” Internet-Draft draft-zyp-json-

schema-03, IETF Secretariat, 2010

[22] P.C. Bryan and K. Zyp, “JSON Pointer,” Internet-Draft draft-ietf-

appsawg-json-pointer-01, IETF Secretariat, 2012

