Bridging the Gap between Security/Risk Assessment and Quality Evaluation Methods

Luis Olsina, Alexander Dieser, Guillermo Covella
GIDIS_Web, Engineering School at Universidad Nacional de La Pampa, Argentina

Elena Pesotskaya
School of Software Engineering, HSE at National Research University, Russia
Summary of the Paper/Presentation Aim

- Преодоление разрыва между методами оценки рисков/безопасности и методами оценки качества

 Bridging the gap between ...

- In the present work, we discuss the added value of supporting the IT Security and Risk Assessment areas with a Measurement and Evaluation Strategy, which includes methods that strongly relies on Metrics and Indicators.
Summary of the Paper/Presentation Aim

- An IT security vulnerability (attribute) can be considered as a potential weakness in a target system (target entity) that could be exploited by a threat source (source entity).

- Most vulnerable attributes of a target system can be identified for instance with security controls in order to evaluate the level of their weaknesses (acceptability level).

- Thus, understanding the current quality acceptability level achieved for vulnerable attributes can help in turn assessing the risk and planning actions for treatment (improvement) from the impact (consequence) standpoint.
The underlying hypothesis in our proposal is that each identified attribute associated with the target entity to be controlled should show the highest quality satisfaction level (acceptability level) as an elementary indicator.

The higher the quality indicator value achieved per each attribute, the lower the vulnerability indicator value and therefore the potential impact.
Summary of the Paper/Presentation Aim

• The entrance gate to IT Security and Risk Assessment areas is based on identifying vulnerable attributes of a target entity, which can be quantified by metrics and interpreted by indicators.
 • Metrics and indicators are organizational assets and should be seen as designed, versioned and stored by-products

• Hence, by using an evaluation-driven strategy (as GOCAME) we can apply for quality and risk assessment its Multi-Criteria (attribute) Decision methods

Risk value for Attribute Ai = Probability of Event occurrence for Ai * Vulnerability Indicator value for Ai
 Vulnerability Indicator value Ai = 100 – Quality Indicator value Ai
Summary of the Paper/Presentation Aim

- **Risk evaluation** assists in the decision about **risk treatment**, which is defined as “the process to modify risk”.
- Usually **risk treatment** can involve:

 i);
 ii);
 iii) removing the risk source;
 iv) changing the likelihood (probability);
 v) **changing the consequences**;
 vi) sharing the risk with another party or parties; and
 vii)
Summary of the Paper/Presentation Aim

- Ultimately, without the well-established support of metrics and indicators and their values, Software Risk Management could be more craftwork than engineering!

- Metrics and indicators are organizational assets which provide useful data and information for analyzing, recommending, controlling and ultimately making decisions.

- The proposed approach of looking at (security) vulnerabilities as attributes of target entities and then using metrics and indicators for their measurement and evaluation is illustrated in the following slides, considering also the W5H mnemonic rule!
GOCAME M&E Strategy: An Overview

• GOCAME is an integrated Measurement & Evaluation strategy which follows a goal-oriented and multiple-attribute (criteria) evaluation approach.

GOCAME has its terminological base defined as an ontology from which the conceptual framework emerges.

GOCAME process embraces the following activities:

i) Define Nonfunctional Requirements (Features/Attributes);
ii) Design the Measurement (Metrics);
iii) Design the Evaluation (Indicators);
iv) Implement the Measurement (measure values/data);
v) Implement the Evaluation (indicator values / information);
vi) Analyze and Recommend

WebQEM methodology provides a multi-criteria evaluation approach, relying on experts and/or end users to evaluate and analyze different views of quality for software/web applications.
GOCAME Process: Overview

W5H rule: Why, What.
Define Non-Functional Requirements

The M&E information need **goal** is to understand the current quality satisfaction level achieved, particularly for non-vulnerabilities regarding the Security characteristic, from the security administrator user viewpoint, for a student management system widespread used in Argentinean national universities.

M&E Information Need:

- **Purpose:** Understand (and later Improve)
- **User Viewpoint:** IT Security Administrator
- **Entity Category (Target):** IT System
- **Entity (Target):** SIU Guarani register system
- **Quality Focus:** Security (Confidentiality/Integrity/Authenticity)
- **Quality View:** External Quality
- **Context:** Engineering School, UNLPam ... **Entity (Source):** Attacker
Define NFR: Requirements Tree

1. **Security**
 1.1. **Confidentiality**
 1.1.1. **Access Schema Protectability**
 1.1.1.1. *Authentication Schema Bypass*
 1.1.1.2. *Password Aging Policy*
 1.1.1.3. *String Password Robustness*
 1.2. **Integrity**
 1.2.1. **Cross-Site Scripting Immunity**
 1.2.1.1. *Reflected Cross-Site Scripting Immunity*
 1.2.1.2. *Stored Cross-Site Scripting Immunity*
 1.2.1.3. *DOM-based Cross-Site Scripting Immunity*
 1.2.1.4. *Cross-site request forgery Immunity*
 1.3. **Authenticity**
 1.3.1. **Session Impersonation Protectability**
 1.3.1.1. *Session Data Disclosure Protectability*
 1.3.1.2. *Session ID Disclosure Protectability*
 1.3.1.3. *Session Non-Replay Protectability*
GOCAME Process: Design the Measurement

W5H rule: How

- Design the Measurement (A2)
- Define Non-Functional Requirements (A1)
- [Metrics Specification]
- [Non-Functional Requirements Specification]
- Implement the Measurement (A3)
- Design the Evaluation (A4)
- Implement the Evaluation (A5)
- Analyze and Recommend (A6)
- [Conclusion / Recommendation Report]
Selected Metric for the Attribute 1.1.1.1

Attribute: Authentication Schema Bypass (Coded 1.1.1.1)

Attribute: Amount of successful attempts to access protected pages

Direct Metric:
- **Name:** Total number of attempts to access protected pages (#TPP)
- **Objective:** The total number of protected pages (i.e., the given population) to be attempted for access by a given technique
- **Author:** Covella G. and Dieser A.
- **Version:** 1.0

Measurement Method:
- **Specification:** As precondition, log into the website with a valid user ID and password. Browse the site looking for the URL population of protected pages, which are those that must be accessed only after a successful login. Add one per each protected page URL selected.
- **Type:** Objective

Numerical Scale:
- **Representation:** Discrete
- **Value Type:** Integer
- **Scale Type:** Absolute

Unit:
- **Name:** Protected pages
- **Acronym:** Pp

Per each attribute of the requirements tree, a Metric (either direct or indirect) should be selected from the **Metrics Repository**.
GOCAME Process: Design the Evaluation

W5H rule: How

[Diagram showing the GOCAME process steps involving design, measurement, and evaluation-related tasks and data stores.]
Attribute: Authentication Schema Bypass

Elemental Indicator:
- **Name:** Performance Level of the Authentication Schema Bypass (P_ASB)
- **Author:** Covella G. and Dieser A.
- **Version:** 1.0

Elementary Model:
- **Function Name:** P_ASB function
- **Specification:** the mapping is:
 - \(P_{\text{ASB}} = 100 \text{ iff } \%PPA < \%\text{PPAMIN} \)
 - \(P_{\text{ASB}} = 80 \text{ iff } \%\text{PPAMIN} \leq \%PPA < \%\text{PPAMAX} \)
 - \(P_{\text{ASB}} = 0 \text{ iff } \%PPA \geq \%\text{PPAMAX} \)
 where \(\%PPA \) is the indirect metric specified in Table III.

Decision Criterion: [Acceptability Levels]
- **Name 1:** Unsatisfactory
 - **Range:** if \(0 \leq P_{\text{ASB}} \leq 60 \)
 - **Description:** indicates change actions must be taken with high priority
- **Name 2:** Marginal
 - **Range:** if \(60 < P_{\text{ASB}} \leq 90 \)
 - **Description:** indicates a need for improvement actions
- **Name 3:** Satisfactory
 - **Range:** if \(90 < P_{\text{ASB}} \leq 100 \)
 - **Description:** indicates no need for current actions

Numerical Scale:
- **Representation:** Continuous
- **Value Type:** Real
 - **Scale Type:** Proportion
- **Unit:**
 - **Name:** Percentage
 - **Acronym:** %

Per each attribute (elementary NFR) of the requirements tree, an Elementary Indicator should be selected from the Indicators Repository.

It uses data coming from the measure, interpreting it by means of the Elementary Model.
Design the Evaluation: Global I

Global (Aggregation) Model:

Function:

- Name: LSP (Logic Scoring of Preference)
- Specification:
 \[P/GI \ (r) = (W_1 \times I_{1r} + W_2 \times I_{2r} + \ldots + W_m \times I_{mr})^{1/r} \]

Numerical Scale:

- Scale Type: absolute
- Unit name: Percentage (%)

Decision Criteria/Acceptability Levels:

- if \(0 \leq X \leq 60 \): “unsatisfactory” ➔ indicates change actions must take high priority.
- if \(60 < X \leq 90 \): “marginal” ➔ indicates a need for improvement actions.
- if \(90 < X \leq 100 \): “satisfactory” ➔ indicates satisfactory quality of the analyzed feature.

It aggregates Elementary Indicators into Partial Indicators and Global Indicator (regarding sub-characteristics and characteristics of the requirements tree).
“the awareness of the added value of supporting the IT security/risk assessment area with quality M&E methods and strategy, which are based on metrics and indicators”

The entrance gate is based on identifying vulnerable attributes of a target entity, which can be quantified by metrics and interpreted by indicators.

by using an evaluation-driven strategy as GOCAME, we can apply for security and risk assessment its multi-criteria (attribute) decision analysis methods
Summary of Work Contributions (2/3)

• “a thorough discussion about the specification of metrics and indicators as resources (work products) for measurement and evaluation process descriptions…”

• They are key organizational assets for providing suitable data and information for analyzing, recommending, controlling and ultimately decision-making processes
 • importance for consistency and comparability reasons recording not only data sets and information but also the associated metadata
See example of **inconsistency of analysis** in Section III.C, 2nd and 3th paragraphs of the paper.
Summary of Work Contributions (3/3)

- “the illustration of metrics and indicators from excerpts of an actual IT security and risk evaluation case study”

- The first goal is to understand the current quality (non-vulnerability) satisfaction level achieved to the Security characteristic for the SIU target entity ...
 - Once its current state is understood, the following purpose is to improve the SIU system in those weakly performed indicators; that is, to reduce its security risks.

Risk value for Attribute Ai = Probability of Event occurrence for Ai * Vulnerability Indicator value for Ai
Questions?

For further questions send an E-mail to: olsinal@ing.unlpam.edu.ar

Dr. Luis Olsina
GIDIS_Web
Departamento de Informática – Facultad de Ingeniería – Universidad Nacional de La Pampa
General Pico – La Pampa – Argentina